3.190 \(\int \frac{(a+a \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac{5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=166 \[ \frac{4 a^2 (A+2 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 a^2 (7 A+5 B) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}+\frac{4 a^2 (4 A+5 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 A \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac{3}{2}}(c+d x)} \]

[Out]

(4*a^2*(4*A + 5*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^2*(A + 2*B)*S
qrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^2*(7*A + 5*B)*Sin[c + d*x])/(15*d
*Sqrt[Sec[c + d*x]]) + (2*A*(a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.260026, antiderivative size = 166, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {4017, 3996, 3787, 3771, 2639, 2641} \[ \frac{2 a^2 (7 A+5 B) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}+\frac{4 a^2 (A+2 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{4 a^2 (4 A+5 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 A \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(4*a^2*(4*A + 5*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^2*(A + 2*B)*S
qrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^2*(7*A + 5*B)*Sin[c + d*x])/(15*d
*Sqrt[Sec[c + d*x]]) + (2*A*(a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2))

Rule 4017

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*n), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rule 3996

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
 + (A_)), x_Symbol] :> Simp[(A*a*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*n), x] + Dist[1/(d*n), Int[(d*Csc[e + f*x
])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B},
 x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac{5}{2}}(c+d x)} \, dx &=\frac{2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2}{5} \int \frac{(a+a \sec (c+d x)) \left (\frac{1}{2} a (7 A+5 B)+\frac{1}{2} a (A+5 B) \sec (c+d x)\right )}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 (7 A+5 B) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}+\frac{2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}-\frac{4}{15} \int \frac{-\frac{3}{2} a^2 (4 A+5 B)-\frac{5}{2} a^2 (A+2 B) \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a^2 (7 A+5 B) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}+\frac{2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{1}{3} \left (2 a^2 (A+2 B)\right ) \int \sqrt{\sec (c+d x)} \, dx+\frac{1}{5} \left (2 a^2 (4 A+5 B)\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a^2 (7 A+5 B) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}+\frac{2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{1}{3} \left (2 a^2 (A+2 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx+\frac{1}{5} \left (2 a^2 (4 A+5 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{4 a^2 (4 A+5 B) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{4 a^2 (A+2 B) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 a^2 (7 A+5 B) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}+\frac{2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}\\ \end{align*}

Mathematica [C]  time = 1.78556, size = 153, normalized size = 0.92 \[ \frac{a^2 \sqrt{\sec (c+d x)} \left (-4 i (4 A+5 B) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},-e^{2 i (c+d x)}\right )+20 (A+2 B) \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+\cos (c+d x) (10 (2 A+B) \sin (c+d x)+3 A \sin (2 (c+d x))+48 i A+60 i B)\right )}{15 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(a^2*Sqrt[Sec[c + d*x]]*(20*(A + 2*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - (4*I)*(4*A + 5*B)*E^(I*(c
 + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + Cos[c + d*x]*(
(48*I)*A + (60*I)*B + 10*(2*A + B)*Sin[c + d*x] + 3*A*Sin[2*(c + d*x)])))/(15*d)

________________________________________________________________________________________

Maple [A]  time = 1.663, size = 357, normalized size = 2.2 \begin{align*} -{\frac{4\,{a}^{2}}{15\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -12\,A\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+ \left ( 32\,A+10\,B \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) + \left ( -13\,A-5\,B \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +5\,A\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -12\,A\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +10\,B\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -15\,B\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x)

[Out]

-4/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(-12*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)
^6+(32*A+10*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-13*A-5*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+5*A
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*A*(2*s
in(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+10*B*(2*sin(1/
2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*B*(2*sin(1/2*d*x
+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^
4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B a^{2} \sec \left (d x + c\right )^{3} +{\left (A + 2 \, B\right )} a^{2} \sec \left (d x + c\right )^{2} +{\left (2 \, A + B\right )} a^{2} \sec \left (d x + c\right ) + A a^{2}}{\sec \left (d x + c\right )^{\frac{5}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((B*a^2*sec(d*x + c)^3 + (A + 2*B)*a^2*sec(d*x + c)^2 + (2*A + B)*a^2*sec(d*x + c) + A*a^2)/sec(d*x +
c)^(5/2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a^{2} \left (\int \frac{A}{\sec ^{\frac{5}{2}}{\left (c + d x \right )}}\, dx + \int \frac{2 A}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx + \int \frac{A}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int \frac{B}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx + \int \frac{2 B}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int B \sqrt{\sec{\left (c + d x \right )}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2*(A+B*sec(d*x+c))/sec(d*x+c)**(5/2),x)

[Out]

a**2*(Integral(A/sec(c + d*x)**(5/2), x) + Integral(2*A/sec(c + d*x)**(3/2), x) + Integral(A/sqrt(sec(c + d*x)
), x) + Integral(B/sec(c + d*x)**(3/2), x) + Integral(2*B/sqrt(sec(c + d*x)), x) + Integral(B*sqrt(sec(c + d*x
)), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2/sec(d*x + c)^(5/2), x)